Application of machine learning and complex network measures to an EEG dataset from ayahuasca experiments

Author:

Alves Caroline L.,Cury Rubens Gisbert,Roster Kirstin,Pineda Aruane M.,Rodrigues Francisco A.,Thielemann Christiane,Ciba Manuel

Abstract

Ayahuasca is made from a mixture of Amazonian herbs and has been used for a few hundred years by the people of this region for traditional medicine. In addition, this plant has been shown to be a potential treatment for various neurological and psychiatric disorders.EEG experiments have found specific brain regions that changed significantly due to ayahuasca. Here, we used an EEG dataset to investigate the ability to automatically detect changes in brain activity using machine learning and complex networks. Machine learning was applied at three different levels of data abstraction: (A) the raw EEG time series, (B) the correlation of the EEG time series, and (C) the complex network measures calculated from (B).As a result, the machine learning method was able to automatically detect changes in brain activity, with case (B) showing the highest accuracy (92%), followed by (A) (88%) and (C) (83%), indicating that connectivity changes between brain regions are more important than connectivity changes within brain regions. The most activated areas were the frontal and temporal lobe, which is consistent with the literature.In terms of brain connections, the correlation between F3 and PO4 was the most important. This connection may point to a cognitive process similar to face recognition in individuals during ayahuasca-mediated visual hallucinations.Furthermore, closeness centrality and assortativity were the most important complex network measures. These two measures are also associated with diseases such as Alzheimer’s disease, indicating a possible therapeutic mechanism.Overall, our results showed that machine learning methods were able to automatically detect changes in brain activity during ayahuasca consumption. The results also suggest that the application of machine learning and complex network measurements are useful methods to study the effects of ayahuasca on brain activity and medical use.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3