The autism-associated gene SYNGAP1 regulates human cortical neurogenesis

Author:

Birtele MarcellaORCID,Dosso Ashley Del,Xu Tiantian,Nguyen Tuan,Wilkinson Brent,Urenda Jean-Paul,Knight Gavin,Moore Roger,Sharma Ritin,Pirrotte Patrick,Ashton Randolph S.,Huang Eric J.,Coba Marcelo P.,Quadrato GiorgiaORCID

Abstract

AbstractAutism spectrum disorder (ASD) is a genetically heterogeneous disorder linked with rare, inherited and de novo mutations occurring in two main functional gene categories: gene expression regulation and synaptic function1. Accumulating evidence points to dysregulation in cortical neurogenesis as a convergent mechanism in ASD pathophysiology2–8. While asynchronous development has been identified as a shared feature among ASD-risk genes in the category of gene expression regulation, it remains unknown whether this phenotype is also associated with ASD-risk genes in the synaptic function category. Here we show for the first time the expression of the synaptic Ras GTP-ase activating protein 1 (SYNGAP1), one of the top ASD risk genes9, in human cortical progenitors (hCPs). Interestingly, we found that multiple components of the postsynaptic density (PSD) of excitatory synapses, of which SYNGAP1 is one of the most abundant components 10,11, are enriched in the proteome of hCPs. Specifically, we discover that SYNGAP1 is expressed within the apical domain of human radial glia cells (hRGCs) where it lines the wall of the developing cortical ventricular zone colocalizing with the tight junction-associated protein and MAGUK family member TJP1. In a cortical organoid model of SYNGAP1 haploinsufficiency, we show dysregulated cytoskeletal dynamics that impair the scaffolding and division plane of hRGCs, resulting in disrupted lamination of the cortical plate and accelerated maturation of cortical projection neurons. Overall, the dual function of SYNGAP1 in neuronal synapses and progenitor cells reframes our understanding of the pathophysiology of SYNGAP1-related disorders and, more broadly, underscores the importance of dissecting the role of synaptic genes associated with neurodevelopmental disorders in distinct cell types across developmental stages.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3