Distinct gaits of self-propelled quadriflagellate microswimmers

Author:

Cortese Dario,Wan Kirsty Y.ORCID

Abstract

Legged animals often coordinate multiple appendages for both underwater and terrestrial loco-motion. Quadrupeds in particular, change their limb movements dynamically to achieve a number of gaits, such as the gallop, trot, and pronk. Surprisingly, micron-sized unicellular algae are also capable of coordinating four flagella to produce microscale versions of these gaits for swimming. Here we present a fully-3D model of a quadriflagellate microswimmer comprising five beads and systematically investigate the effect of gait on swimming dynamics, propulsion speed, efficiency, and induced flow patterns. We find that by changing gait alone, distinct motility patterns emerge from the same basic microswimmer design. Our findings suggest that different species of morphologically-similar microorganisms (e.g. with identical number and placement of appendages) evolved distinct flagellar coordination patterns as a consequence of different ecological drivers. By comparing the flagella-induced flows in terms of volumetric clearance rate, we further explore the implications of distinct gaits for single-cell dispersal, feeding, and predator-avoidance.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Methods and Measures for Investigating Microscale Motility;Integrative And Comparative Biology;2023-06-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3