A high throughput screen with a clonogenic endpoint to identify radiation modulators of cancer

Author:

Gomes Nathan P.ORCID,Frederick BarbaraORCID,Jacobsen Jeremy R.ORCID,Chapnick Doug,Su Tin TinORCID

Abstract

AbstractGomes, N. P., Frederick, B., Jacobsen, J. R., Chapnick. D. and Su, T. T. A high throughput screen with a clonogenic endpoint to identify radiation modulators of cancer. Radiat. Res.Clonogenic assays evaluate the ability of single cells to proliferate and form colonies. This process approximates the regrowth and recurrence of tumors after treatment with radiation or chemotherapy, and thereby provides a drug discovery platform for compounds that block this process. However, because of their labor-intensive and cumbersome nature, adapting canonical clonogenic assays for high throughput screening (HTS) has been challenging. We overcame these barriers by developing an integrated system that automates cell- and liquid-handling, irradiation, dosimetry, drug administration, and incubation. Further, we developed a fluorescent live-cell based automated colony scoring methodology that identifies and counts colonies precisely based upon actual nuclei number rather than colony area, thereby eliminating errors in colony counts caused by radiation induced changes in colony morphology. We identified 13 cell lines from 7 cancer types, where radiation is a standard treatment module, that exhibit identical radiation and chemoradiation response regardless of well format and are amenable to miniaturization into small-well HTS formats. We performed pilot screens through a 1584 compound NCI Diversity Set library using two cell lines representing different cancer indications. Radiation modulators identified in the pilot screens were validated in traditional clonogenic assays, providing proof-of-concept for the screen. The integrated methodology, hereafter ‘clonogenic HTS’, exhibits excellent robustness (Z’ values >0.5) and shows high reproducibility (>95%). We propose that clonogenic HTS we developed can function as a drug discovery platform to identify compounds that inhibit tumor regrowth following radiation therapy, to identify new efficacious pair-wise combinations of known oncologic therapies, or to identify novel modulators of approved therapies.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3