Single molecule microscopy to profile the effect of zinc status of transcription factor dynamics

Author:

Damon Leah J.,Aaron Jesse,Palmer Amy E.ORCID

Abstract

AbstractTranscription factors (TFs) are DNA binding proteins that control the expression of genes. The regulation of transcription is a complex process that involves binding of TFs to specific sequences, recruitment of cofactors and chromatin remodelers, assembly of the pre-initiation complex and ultimately the recruitment of RNA polymerase II. Increasing evidence suggests that TFs are highly dynamic and interact only transiently with DNA. Single molecule microscopy techniques are powerful approaches for visualizing and tracking individual TF molecules as they diffuse in the nucleus and interact with DNA. In this work, we employ multifocus microscopy and highly inclined and laminated optical sheet microscopy to track TF dynamics in response to perturbations in labile zinc inside cells. We sought to define whether zinc-dependent TFs sense changes in the labile zinc pool by determining whether their dynamics and DNA binding can be modulated by zinc. While it is widely appreciated that TFs need zinc to bind DNA, whether zinc occupancy and hence TF function are sensitive to changes in cellular zinc remain open questions. We utilized fluorescently tagged versions of the glucocorticoid receptor (GR), with two C4 zinc finger domains, and CCCTC-binding factor (CTCF), with eleven C2H2 zinc finger domains. We found that the biophysical dynamics of both TFs are susceptible to changes in zinc, but in subtly different ways. These results indicate that at least some transcription factors are sensitive to zinc dynamics, revealing a potential new layer of transcriptional regulation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3