SARS-CoV-2 Omicron subvariants evolved to promote further escape from MHC-I recognition

Author:

Moriyama MiyuORCID,Lucas CarolinaORCID,Monteiro Valter Silva,Iwasaki AkikoORCID,

Abstract

AbstractSARS-CoV-2 variants of concern (VOCs) possess mutations that confer resistance to neutralizing antibodies within the Spike protein and are associated with breakthrough infection and reinfection. By contrast, less is known about the escape from CD8+T cell-mediated immunity by VOC. Here, we demonstrated that all SARS-CoV-2 VOCs possess the ability to suppress MHC I expression. We identified several viral genes that contribute to the suppression of MHC I expression. Notably, MHC-I upregulation was strongly inhibited after SARS-CoV-2 infectionin vivo. While earlier VOCs possess similar capacity as the ancestral strain to suppress MHC I, Omicron subvariants exhibit a greater ability to suppress surface MHC-I expressions. Collectively, our data suggest that, in addition to escape from neutralizing antibodies, the success of Omicron subvariants to cause breakthrough infection and reinfection may in part be due to its optimized evasion from T cell recognition.SignificanceNumerous pathogenic viruses have developed strategies to evade host CD8+T cell-mediated clearance. Here, we demonstrated that SARS-CoV-2 encodes multiple viral factors that can modulate MHC-I expression in the host cells. We found that MHC-I upregulation was strongly suppressed during SARS-CoV-2 infectionin vivo. Notably, the Omicron subvariants showed an enhanced ability to suppress MHC-I compared to the original strain and the earlier SARS-CoV-2 variants of concern (VOCs). Our results point to the inherently strong ability of SARS-CoV-2 to hinder MHC-I expression and demonstrated that Omicron subvariants have evolved an even more optimized capacity to evade CD8 T cell recognition.

Publisher

Cold Spring Harbor Laboratory

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3