Small-angle x-ray microdiffraction from fibrils embedded in tissue thin sections

Author:

Nepal Prakash,Bashit Abdullah Al,Yang Lin,Makowski LeeORCID

Abstract

AbstractSmall-angle x-ray scattering (SAXS) from fibrils embedded in a fixed, thin section of tissue includes contributions from the fibrils; the polymeric matrix surrounding the fibrils; other constituents of the tissue; and cross-terms due to the spatial correlation between fibrils and neighbouring molecules. This complex mixture severely limits the amount of information that can be extracted from scattering studies. However, availability of micro- and nano-beams has made possible measurement of scattering from very small volumes which, in some cases, may be dominated by a single fibrillar constituent. In those cases, information about the predominant species may be accessible. Nevertheless, even in these cases, the correlations between the positions of fibrils and other constituents have significant impact on the observed scattering. Here, we propose strategies to extract partial information about fibril structure and tissue organization on the basis of SAXS from samples of this type. We show that the spatial correlation function of the fibril in the direction perpendicular to the fibril axis can be computed and contains information about the predominant fibril structure and the organization of the surrounding tissue matrix. It has significant advantages over approaches based on techniques developed for x-ray solution scattering. We present examples of the calculation of correlation in different types of samples to demonstrate the kinds of information that can be obtained from these measurements.SynopsisThe availability of micro- and nano- x-ray beams is making possible measurement of scattering from very small volumes, opening possibilities for derivingin situstructural information on fibrillar constituents in complex materials and tissues. This work outlines a set of strategies for confronting the formidable technical obstacles to extracting useful structural information from scattering derived from these materials.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3