CHIP ubiquitin ligase is involved in the nucleolar stress management

Author:

Piechota MalgorzataORCID,Biriczova LillaORCID,Kowalski KonradORCID,Szulc Natalia A.ORCID,Pokrzywa WojciechORCID

Abstract

ABSTRACTThe nucleolus is a dynamic nuclear biomolecular condensate involved in cellular stress response. Under proteotoxic stress, the nucleolus can store damaged proteins for refolding or degradation. HSP70 chaperone is a well-documented player in the recovery process of proteins accumulated in the nucleolus after heat shock. However, little is known about the involvement of the ubiquitin-proteasome system in the turnover of its nucleolar clients. Here we show that HSP70, independently of its ATPase activity, promotes migration of the CHIP (carboxyl terminus of HSC70-interacting protein) ubiquitin ligase into the granular component of the nucleolus, specifically after heat stress. We show that while in the nucleolus, CHIP retains mobility that depends on its ubiquitination activity. Furthermore, after prolonged exposure to heat stress, CHIP self-organizes into large, intra-nucleolar droplet-like structures whose size is determined by CHIP ubiquitination capacity. Using a heat-sensitive nucleolar protein luciferase, we show that excess CHIP impairs its regeneration, probably through deregulation of HSP70. Our results demonstrate a novel role for CHIP in managing nucleolar proteostasis in response to stress.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3