Time Lagged Multidimensional Pattern Connectivity (TL MDPC): An EEG/MEG Pattern Transformation Based Functional Connectivity Metric

Author:

Rahimi Setareh,Jackson Rebecca,Farahibozorg Seyedeh-Rezvan,Hauk Olaf

Abstract

AbstractFunctional and effective connectivity methods are essential to study the complex information flow in brain networks underlying human cognition. Only recently have connectivity methods begun to emerge that make use of the full multidimensional information contained in patterns of brain activation, rather than univariate summary measures of these patterns. To date, these methods have mostly been applied to fMRI data, and no method allows vertex-vertex transformation with the temporal specificity of EEG/MEG data. Here, we introduce time-lagged multidimensional pattern connectivity (TL-MDPC) as a novel bivariate functional connectivity metric for EEG/MEG research. TL-MDPC estimates the vertex-to-vertex transformations among multiple brain regions and across different latency ranges. It determines how well patterns in ROI X at time point tx can linearly predict patterns of ROI Y at time point ty. In the present study, we use simulations to demonstrate TL-MDPC’s increased sensitivity to multidimensional effects compared to a univariate approach across realistic choices of number of trials and signal-to-noise ratio. We applied TL-MDPC, as well as its univariate counterpart, to an existing dataset varying the depth of semantic processing of visually presented words by contrasting a semantic decision and a lexical decision task. TL-MDPC detected significant effects beginning very early on, and showed stronger task modulations than the univariate approach, suggesting that it is capable of capturing more information. With TL-MDPC only, we observed rich connectivity between core semantic representation (left and right anterior temporal lobes) and semantic control (inferior frontal gyrus and posterior temporal cortex) areas with greater semantic demands. TL-MDPC is a promising approach to identify multidimensional connectivity patterns, typically missed by univariate approaches.HighlightsTL-MDPC is a multidimensional functional connectivity method for event-related EMEGTL-MDPC captures both univariate and multidimensional connectivityTL-MDPC yields both zero-lag and time-lagged dependenciesTL-MDPC produced richer connectivity than univariate approaches in a semantic taskTL-MDPC identified connectivity between the ATL hubs and semantic control regions

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3