Author:
Schaffler Melanie D,Johnson Micah,Hing Ben,Kahler Paul,Hultman Ian,Srivastava Sanvesh,Arnold Justin,Blendy Julie N,Hultman Rainbo,Abdus-Saboor Ishmail
Abstract
AbstractSocial touch can act as a stress buffer, reducing behavioral and physiological responses to stressful scenarios. However, skin-brain touch pathways that promote stress resilience remain unknown. Here, we show that mice with an early life genetic ablation of Mrgprb4-lineage touch neurons display stress vulnerability behaviors in adulthood. Chemogenetic activation of these touch neurons reduced corticosterone levels under mild acute stress conditions. In addition, whole-brain c-Fos activity mapping while chemogenetically turning on these neurons uncovered differential neural activity patterns in brain areas relevant to somatosensation, reward, and affect. To gain mechanistic insight into this skin-brain touch pathway for stress susceptibility, we used multi-circuit neurophysiological recordings across seven brain regions at baseline and after stress in mice that had Mrgprb4-lineage touch neurons ablated in early life. Interestingly, the Mrgprb4-lineage neuron-ablated mice have alterations in local field potential phase directionality and power in the theta frequencies in mesolimbic reward regions, which may underlie our observed stress susceptibility phenotype. Together, these studies revealed that sensory neurons in the skin engage networks across the brain to promote stress resilience.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献