Activation of TnSmu1, an integrative and conjugative element, by an ImmR-like transcriptional regulator in Streptococcus mutans

Author:

King Shawn,Quick Allison,King Kalee,Walker Alejandro R.ORCID,Shields Robert C.ORCID

Abstract

AbstractIntegrative and conjugative elements (ICEs) are chromosomally encoded mobile genetic elements that can transfer DNA between bacterial strains. Recently, as part of efforts to determine hypothetical gene functions, we have discovered an important regulatory module encoded on an ICE known as TnSmu1 on the Streptococcus mutans chromosome. The regulatory module consists of a cI-like repressor with a helix-turn-helix DNA binding domain immRSmu (immunity repressor) and a metalloprotease immASmu (anti-repressor). It is not possible to create an in-frame deletion mutant of immRSmu and repression of immRSmu with CRISPRi causes substantial cell defects. We used a bypass of essentiality (BoE) screen to discover genes that allow deletion of the regulatory module. This revealed that conjugation genes, located within TnSmu1, can restore the viability of an immRSmu mutant. Deletion of immRSmu also leads to production of a circular intermediate form of TnSmu1, that is also inducible by the genotoxic agent mitomycin C. To gain further insights into potential regulation of TnSmu1 by ImmRSmu and broader effects on S. mutans UA159 physiology we used CRISPRi and RNA-seq. Strongly induced genes included all the TnSmu1 mobile element, genes involved in amino acid metabolism, transport systems, and a Type I-C CRISPR-Cas system. Lastly, bioinformatic analysis shows that the TnSmu1 mobile element and its associated genes are well distributed across S. mutans isolates. Taken together, our results show that activation of TnSmu1 is controlled by the immRASmu module, and that activation is deleterious to S. mutans, highlighting the complex interplay between mobile elements and their host.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3