Fibroblasts-derived from Pluripotent Cells Harboring a Single Allele Knockout in Two Pluripotency Genes Exhibit DNA Methylation Abnormalities and pluripotency induction Defects

Author:

Lasry Rachel,Maoz Noam,Cheng Albert W.,Tov Nataly Yom,Kulenkampff Elisabeth,Azagury Meir,Yang Hui,Ople Cora,Markoulaki Styliani,Faddah Dina A.,Makedonski Kirill,Sabbag Ofra,Jaenisch Rudolf,Buganim YosefORCID

Abstract

ABSTRACTA complete knockout (KO) of a single key pluripotency gene has been shown to drastically affect embryonic stem cell (ESC) function and epigenetic reprogramming. However, knockin (KI)/KO of a reporter gene only in one of two alleles in a single pluripotency gene is considered harmless and is largely used in the stem cell field. Here, we sought to understand the impact of simultaneous elimination of a single allele in two ESC key genes on pluripotency potential and acquisition. We established multiple pluripotency systems harboring KI/KO in a single allele of two different pluripotency genes (i.e. Nanog+/-; Sall4+/-, Nanog+/-; Utf1+/-, Nanog+/-; Esrrb+/- and Sox2+/-; Sall4+/-). Interestingly, although these double heterozygous mutant lines maintain their stemness and contribute to chimeras equally to their parental control cells, fibroblasts derived from these systems show a significant reduction in their capability to induce pluripotency either by Oct4, Sox2, Klf4 and Myc (OSKM) or by nuclear transfer (NT). Tracing the expression of Sall4 and Nanog, as representative key pluripotency targeted genes, at early phases of reprogramming could not explain the seen delay/blockage. Further exploration identifies abnormal methylation landscape around pluripotent and developmental genes in the double heterozygous mutant fibroblasts. Accordingly, treatment with 5-azacytidine two days prior to transgene induction rescues the reprogramming defects. This study emphasizes the importance of maintaining two intact alleles for pluripotency induction and suggests that insufficient levels of key pluripotency genes leads to DNA methylation abnormalities in the derived-somatic cells later on in development.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3