Modelling the structure of Short Gastrulation and generation of a toolkit for studying its function in Drosophila

Author:

Frampton Sophie LORCID,Sutcliffe CatherineORCID,Baldock ClairORCID,Ashe Hilary LORCID

Abstract

AbstractA BMP gradient is essential for patterning the dorsal-ventral axis of invertebrate and vertebrate embryos. The extracellular BMP binding protein Short Gastrulation (Sog) in Drosophila plays a key role in BMP gradient formation. In this study, we combine genome editing, structural and developmental approaches to study Sog function in Drosophila. We generate a sog knockout fly stock, which allows simple reintegration of altered versions of the sog coding sequence. As proof-of-principle, we test the requirement for two cysteine residues that were previously identified as targets for palmitoylation, which has been proposed to enhance Sog secretion. However, we show that the SogC27,28S mutant is viable with only very mild phenotypes, indicating that these residues and their potential modification are not critical for Sog secretion in vivo. Additionally, we use experimental negative stain EM imaging and hydrodynamic data to validate the AlphaFold structure prediction for Sog. The model suggests a more compact shape than the vertebrate ortholog Chordin and conformational flexibility between the C-terminal von Willebrand C domains. We discuss how this altered compactness may contribute to mechanistic differences in Sog and Chordin function during BMP gradient formation.Summary statementThe authors model the structure of Sog and establish a new sog knockout fly stock that they validate for the testing of specific sog mutations.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3