ArcticAI: A Deep Learning Platform for Rapid and Accurate Histological Assessment of Intraoperative Tumor Margins

Author:

Levy JoshuaORCID,Davis Matthew,Chacko Rachael,Davis Michael,Fu Lucy,Goel Tarushii,Pamal Akash,Nafi Irfan,Angirekula Abhinav,Christensen BrockORCID,Hayden Matthew,Vaickus Louis,LeBoeuf Matthew

Abstract

AbstractSuccessful treatment of solid cancers relies on complete surgical excision of the tumor either for definitive treatment or before adjuvant therapy. Radial sectioning of the resected tumor and surrounding tissue is the most common form of intra-operative and post-operative margin assessment. However, this technique samples only a tiny fraction of the available tissue and therefore may result in incomplete excision of the tumor, increasing the risk of recurrence and distant metastasis and decreasing survival. Repeat procedures, chemotherapy, and other resulting treatments pose significant morbidity, mortality, and fiscal costs for our healthcare system. Mohs Micrographic Surgery (MMS) is used for the removal of basal cell and squamous cell carcinoma utilizing frozen sections for real-time margin assessment while assessing 100% of the peripheral and deep margins, resulting in a recurrence rate of less than one percent. Real-time assessment in many tumor types is constrained by tissue size and complexity and the time to process tissue and evaluate slides while a patient is under general anesthesia. In this study, we developed an artificial intelligence (AI) platform, ArcticAI, which augments the surgical workflow to improve efficiency by reducing rate-limiting steps in tissue preprocessing and histological assessment through automated mapping and orientation of tumor to the surgical specimen. Using basal cell carcinoma (BCC) as a model system, the results demonstrate that ArcticAI can provide effective grossing recommendations, accurately identify tumor on histological sections, map tumor back onto the surgical resection map, and automate pathology report generation resulting in seamless communication between the surgical pathology laboratory and surgeon. AI-augmented-surgical excision workflows may make real-time margin assessment for the excision of more complex and challenging tumor types more accessible, leading to more streamlined and accurate tumor removal while increasing healthcare delivery efficiency.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3