Single-cell Ca2+parameter inference reveals how transcriptional states inform dynamic cell responses

Author:

Wu XiaojunORCID,Wollman RoyORCID,MacLean Adam L.ORCID

Abstract

AbstractSingle-cell genomic technologies offer vast new resources with which to study cells, but their potential to inform parameter inference of cell dynamics has yet to be fully realized. Here we develop methods for Bayesian parameter inference with data that jointly measure gene expression and Ca2+dynamics in single cells. We propose to share information between cells via transfer learning: for a sequence of cells, the posterior distribution of one cell is used to inform the prior distribution of the next. In application to intracellular Ca2+signaling dynamics, we fit the parameters of a dynamical model for thousands of cells with variable single-cell responses. We show that transfer learning accelerates inference with sequences of cells regardless of how the cells are ordered. However, only by ordering cells based on their transcriptional similarity can we distinguish Ca2+dynamic profiles and associated marker genes from the posterior distributions. Inference results reveal complex and competing sources of cell heterogeneity: parameter covariation can diverge between the intracellular and intercellular contexts. Overall, we discuss the extent to which single-cell parameter inference informed by transcriptional similarity can quantify relationships between gene expression states and signaling dynamics in single cells.

Publisher

Cold Spring Harbor Laboratory

Reference52 articles.

1. Darren James Wilkinson. Stochastic modelling for systems biology. Chapman & Hall/CRC mathematical and computational biology. CRC Press, Taylor & Francis Group, Boca Raton London New York, third edition, first issued in paperback edition, 2020. ISBN 978-0-367-65693-5.

2. COPASI--a COmplex PAthway SImulator

3. Maximizing the Information Content of Experiments in Systems Biology

4. Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art

5. Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3