Integration of sound and locomotion information by auditory cortical neuronal ensembles

Author:

Vivaldo Carlos Arturo,Lee JoonyeupORCID,Shorkey MaryClaire,Keerthy Ajay,Rothschild GideonORCID

Abstract

AbstractThe ability to process and act upon incoming sounds during locomotion is critical for survival. Intriguingly, sound responses of auditory cortical neurons are on average weaker during locomotion as compared to immobility and these results have been suggested to reflect a computational resource allocation shift from auditory to visual processing. However, the evolutionary benefit of this hypothesis remains unclear. In particular, whether weaker sound-evoked responses during locomotion indeed reflect a reduced involvement of the auditory cortex, or whether they result from an alternative neural computation in this state remains unresolved. To address this question, we first used neural inactivation in behaving mice and found that the auditory cortex plays a critical role in sound-guided behavior during locomotion. To investigate the nature of this processing, we used two-photon calcium imaging of local excitatory auditory cortical neural populations in awake mice. We found that underlying a net inhibitory effect of locomotion on sound-evoked response magnitude, spatially intermingled neuronal subpopulations were differentially influenced by locomotion. Further, the net inhibitory effect of locomotion on sound-evoked responses was strongly shaped by elevated ongoing activity. Importantly, rather than reflecting enhanced “noise”, this ongoing activity reliably encoded the animal’s locomotion speed. Prediction analyses revealed that sound, locomotive state and their integration are strongly encoded by auditory cortical ensemble activity. Finally, we found consistent patterns of locomotion-sound integration in electrophysiologically recorded activity in freely moving rats. Together, our data suggest that auditory cortical ensembles are not simply suppressed by locomotion but rather encode it alongside sound information to support sound perception during locomotion.

Publisher

Cold Spring Harbor Laboratory

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3