Abstract
SUMMARYCRISPR-Cas13 systems have been adapted as versatile toolkits for RNA-related applications. Here we systematically evaluate the performance of several popular Cas13 family effectors (Cas13a, Cas13b and Cas13d) under lentiviral vectors and reveal surprisingly differential defects and characteristics of these systems. Using RNA immunoprecipitation sequencing, transcriptome profiling, biochemistry analysis, high-throughput CRISPR-Cas13 screening and machine learning approaches, we determine that each Cas13 system has its intrinsic RNA targets in mammalian cells. Viral process-related host genes can be targeted by Cas13 and affect production of fertile lentiviral particles, thereby restricting the utility of lentiviral Cas13 systems. Multiple RNase activities of Cas13 are involved in endogenous RNA targeting. Unlike target-induced nonspecific collateral effect, intrinsic RNA cleavage can be specific, target-independent and dynamically tuned by varied states of Cas13 nucleases. Our work provides guidance on appropriate use of lentiviral Cas13 systems and further raises cautions about intrinsic RNA targeting during Cas13-based basic and therapeutic applications.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献