Genome-wide association study of brain biochemical phenotypes reveals distinct genetic architecture of Alzheimer’s Disease related proteins

Author:

Oatman Stephanie R.,Reddy Joseph S.ORCID,Quicksall Zachary,Carrasquillo Minerva M.,Wang Xue,Liu Chia-Chen,Yamazaki Yu,Nguyen Thuy T.,Malphrus Kimberly,Heckman Michael,Biswas Kristi,Baker Matthew,Martens Yuka A.,Zhao NaORCID,Rademakers Rosa,DeTure Michael,Murray Melissa E.ORCID,Kanekiyo Takahisa,Dickson Dennis W.ORCID,Bu Guojun,Allen Mariet,Ertekin-Taner Nilüfer

Abstract

AbstractAlzheimer’s disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. Main protein components of these hallmarks include Aβ40, Aβ42, tau, phospho-tau and APOE. With the exception of the APOE-ε4 variant, genetic risk factors associated with brain biochemical measures of these proteins have yet to be characterized. We performed a genome-wide association study in brains of 441 AD patients for quantitative levels of these proteins collected from three distinct fractions reflecting soluble, membrane-bound and insoluble biochemical states. We identified 123 genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD- related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3