Developmental Morphogens Direct Human Induced Pluripotent Stem Cells Towards an Annulus Fibrosus-Like Cell Phenotype

Author:

Peredo Ana P.ORCID,Tsinman Tonia K.ORCID,Bonnevie Edward D.ORCID,Jiang Xi,Smith Harvey E.,Gullbrand Sarah E.ORCID,Dyment Nathaniel A.ORCID,Mauck Robert L.ORCID

Abstract

AbstractTherapeutic interventions for intervertebral disc herniation remain scarce due to the inability of endogenous annulus fibrosus (AF) cells to respond to injury and drive tissue regeneration. Unlike other orthopaedic tissues, such as cartilage, delivery of exogenous cells to the site of annular injury remains underdeveloped, largely due to a lack of an ideal cell source and the invasive nature of cell isolation. Human induced pluripotent stem cells (iPSCs) can be differentiated to specific cell fates using biochemical factors and are, therefore, an invaluable tool for cell therapy approaches. While differentiation protocols have been developed for cartilage and fibrous connective tissues (e.g., tendon), the signals that regulate the induction and differentiation of human iPSCs towards the annulus fibrosus fate remain unknown. Here, we screened a number of candidate factors (and their combinations) and assessed the transcriptomic signatures of key signaling factors involved in embryonic AF development and differentiated function. The transcriptional signatures of treated cells were compared to those of mature human AF cells, and conditions that promoted expression of annulus fibrosus extracellular matrix genes and key transcription factors involved in embryonic AF development were identified. These findings represent an initial approach to guide human induced pluripotent stem cells towards an annulus fibrosus-like fate for cellular delivery strategies.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3