Abstract
AbstractDysregulated neuronal excitability is a hallmark of amyotrophic lateral sclerosis (ALS). We sought to investigate how functional changes to the axon initial segment (AIS), the site of action potential generation, could impact neuronal excitability in a human iPSC model of ALS. We found that early (6-week) ALS-related TDP-43G298S motor neurons showed an increase in the length of the AIS, relative to CRISPR-corrected controls. This was linked to neuronal hyperexcitability and increased spontaneous contractions of hiPSC-myofibers in compartmentalised neuromuscular co-cultures. In contrast late (10-week) TDP-43G298S motor neurons showed reduced AIS length and hypoexcitability. At a molecular level aberrant expression of the AIS master scaffolding protein Ankyrin-G, and the AIS-specific voltage-gated ion channels SCN1A (Nav1.1) and SCN8A (Nav1.6) mirrored these dynamic changes in excitability. Finally, at all stages, TDP-43G298S motor neurons showed compromised activity-dependent plasticity of the AIS, further contributing to abnormal excitability. Our results point toward the AIS as an important subcellular target driving changes to neuronal excitability in ALS.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献