PHYSIOLOGICAL CHARACTERISTICS OF BACTERIAL DROPLETS INDICATE A CATASTROPHIC CONSEQUENCE WITH AN INCREASE IN IMPACT VELOCITY

Author:

Hariharan Vishnu,Chowdhury Atish Roy,Rao S Srinivas,Chakravortty Dipshikha,Basu Saptarshi

Abstract

Droplet impacts on various surfaces play a profound role in different bio-physiological processes and engineering applications. The current study opens a new realm that investigates the plausible effect of impact velocities on bacteria-laden droplets against a solid surface. We unveiled the alarming consequences of Salmonella Typhimurium (STM) laden drop, carrying out the in vitro and intracellular viability of STM to the impact Weber numbers ranging from 100-750. The specified Weber number range mimics the velocity range occurring during the respiratory processes, especially the airborne dispersion of drops during cough. A thick ring of bacterial deposition was observed in all cases irrespective of impacting velocity and the nutrient content of the bacterial medium. The mechanical properties of the bacterial deposit examined using Atomic Force Microscopy reveals the deformation of bacterial morphology, cushioning effect and adhesion energy to determine the cell-cell interactions. The impact velocity induces the shear stress onto the cell walls of STM, thereby deteriorating the in vitro viability. However, we found that even with compromised in vitro viability, Salmonella retrieved from deposited patterns impacted at higher velocity revealed an increased expression of phoP (the response regulator of the PhopQ two-component system) and uninterrupted intracellular proliferation in macrophages. The inability of STM ΔphoP growth in nutrient-rich dried droplets to the subjected impact velocities signifies the predominant role of phoP in maintaining the virulence of Salmonella during desiccation stress. Our findings open a promising avenue for understating the effect of bacteria-laden drop impact and its role in disease spread.Abstract Figure

Publisher

Cold Spring Harbor Laboratory

Reference38 articles.

1. Worthington, H. R. The Worthington Steam Pumping Engine: History of Its Invention and Development. (Worthington, 1876).

2. Origin and dynamics of vortex rings in drop splashing;Nature communications,2015

3. The effect of surface roughness on the contact line and splashing dynamics of impacting droplets;Scientific reports,2019

4. Observed increasing water constraint on vegetation growth over the last three decades

5. Splashing of water drops on solid and wetted surfaces: hydrodynamics and charge separation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3