Tethering distinct molecular profiles of single cells by their lineage histories to investigate sources of cell state heterogeneity

Author:

Minkina AnnaORCID,Cao Junyue,Shendure JayORCID

Abstract

AbstractGene expression heterogeneity is ubiquitous within single cell datasets, even among cells of the same type. Heritable expression differences, defined here as those which persist over multiple cell divisions, are of particular interest, as they can underlie processes including cell differentiation during development as well as the clonal selection of drug-resistant cancer cells. However, heritable sources of variation are difficult to disentangle from non-heritable ones, such as cell cycle stage, asynchronous transcription, and measurement noise. Since heritable states should be shared by lineally related cells, we sought to leverage CRISPR-based lineage tracing, together with single cell molecular profiling, to discriminate between heritable and non-heritable variation in gene expression. We show that high efficiency capture of lineage profiles alongside single cell gene expression enables accurate lineage tree reconstruction and reveals an abundance of progressive, heritable gene expression changes. We find that a subset of these are likely mediated by structural genetic variation (copy number alterations, translocations), but that the stable attributes of others cannot be understood with expression data alone. Towards addressing this, we develop a method to capture cell lineage histories alongside single cell chromatin accessibility profiles, such that expression and chromatin accessibility of closely related cells can be linked via their lineage histories. We call this indirect “coassay” approach “THE LORAX” and leverage it to explore the genetic and epigenetic mechanisms underlying heritable gene expression changes. Using this approach, we show that we can discern between heritable gene expression differences mediated by large and small copy number changes, trans effects, and possible epigenetic variation.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3