Leishmania allelic selection during experimental sand fly infection correlates with mutational signatures of oxidative DNA damage

Author:

Bussotti GiovanniORCID,Li BlaiseORCID,Pescher PascaleORCID,Vojtkova Barbora,Louradour IsabelleORCID,Pruzinova Katerina,Sadlova Jovana,Volf PetrORCID,Späth Gerald F.ORCID

Abstract

ABSTRACTTrypanosomatid pathogens are transmitted by blood-feeding insects, causing devastating human infections. Survival of these parasites in their vertebrate and invertebrate hosts relies on their capacity to differentiate into distinct stages that are the result of a co-evolutionary process. These stages show in addition important phenotypic shifts that often impacts infection, affecting for example parasite pathogenicity, tissue tropism, or drug susceptibility. Despite their clinical relevance, the evolutionary mechanisms that allow for the selection of such adaptive phenotypes remain only poorly investigated. Here we use Leishmania donovani as a trypanosomatid model pathogen to shed first light on parasite evolutionary adaptation during experimental sand fly infection. Applying a comparative genomics approach on hamster- isolated amastigotes and derived promastigotes before (input) and after (output) infection of Phlebotomus orientalis revealed a strong bottleneck effect on the parasite population as judged by principal component and phylogenetic analyses of input and output parasite DNA sequences. Despite random genetic drift caused by the bottleneck effect, our analyses revealed various genomic signals that seem under positive selection given their convergence between independent biological replicates. While no significant fluctuations in gene copy number were revealed between input and output parasites, convergent selection was observed for karyotype, haplotype and allelic changes during sand fly infection. Our analyses further uncovered signature mutations of oxidative DNA damage in the output parasite genomes, suggesting that Leishmania suffers from oxidative stress inside the insect digestive tract. Our results propose a new model of Leishmania genomic adaptation during sand fly infection, where oxidative DNA damage and DNA repair processes drive haplotype and allelic selection. The experimental and computational framework presented here provides a useful blueprint to assess evolutionary adaptation of other eukaryotic pathogens inside their insect vectors, such as Plasmodium spp, Trypanosoma brucei and Trypanosoma cruzi.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3