FBXO11 deficiency in mice impairs lung development and aggravates cigarette smoke-induced airway fibrosis

Author:

Shenoy AnithaORCID,Luo Huacheng,Lulu Sarah,Li Jennifer W.,Jin Yue,Yu Qin,Guo Shu,Shenoy Vinayak,Chen Hao,Bryant Andrew,Wu Lizi,Chang JiaORCID,Mohammed Kamal,Lu JianrongORCID

Abstract

AbstractSmall airway fibrosis is a common pathology of chronic obstructive pulmonary disease (COPD) and contributes to airflow obstruction. However, the underlying fibrogenic mechanism is poorly understood. Epithelial-mesenchymal transition (EMT) has been proposed as a driver of fibrosis. EMT occurs in the airways of COPD patients and smokers, but it remains elusive whether EMT may contribute to airway fibrosis. We previously reported that FBXO11 is a critical suppressor of EMT and Fbxo11 deficiency in mice causes neonatal lethality and EMT in epidermis. Here, we found that Fbxo11-deficient mouse embryonic lungs showed impaired epithelial differentiation, excess fibroblast cells surrounding the airways, and thickened interstitial mesenchyme. We further generated conditional mutant mice to ablate Fbxo11 selectively in the club airway epithelial cells in adult mice, which induced partial EMT in the airways. To determine the effect of EMT on airway fibrosis, Fbxo11 conditional mutant mice were exposed to cigarette smoke. Airway-specific loss of Fbxo11 markedly enhanced smoking-induced airway fibrotic remodeling and collagen deposition. Taken together, our study suggests that EMT in the airway epithelium exacerbates cigarette smoke-induced airway fibrosis.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3