Abstract
AbstractThe steady decline of avian populations worldwide urgently calls for a cyber-physical system to monitor bird migration at the continental scale. Compared to other sources of information (radar and crowdsourced observations), bioacoustic sensor networks combine low latency with a high taxonomic specificity. However, the scarcity of flight calls in bioacoustic monitoring scenes (below 0.1% of total recording time) requires the automation of audio content analysis. In this article, we address the problem of scaling up the detection and classification of flight calls to a full-season dataset: 6672 hours across nine sensors, yielding around 480 million neural network predictions. Our proposed pipeline, BirdVox, combines multiple machine learning modules to produce per-species flight call counts. We evaluate BirdVox on an annotated subset of the full season (296 hours) and discuss the main sources of estimation error which are inherent to a real-world deployment: mechanical sensor failures, sensitivity to background noise, misdetection, and taxonomic confusion. After developing dedicated solutions to mitigate these sources of error, we demonstrate the usability of BirdVox by reporting a species-specific temporal estimate of flight call activity for the Swainson’s Thrush (Catharus ustulatus).
Publisher
Cold Spring Harbor Laboratory
Reference55 articles.
1. Decline of the North American avifauna
2. Direct mortality of birds from anthropogenic causes;Annual Review of Ecology, Evolution, and Systematics,2015
3. North American birds require mitigation and adaptation to reduce vulnerability to climate change;Conservation Science and Practice,2020
4. Autumn migration of North American landbirds;Studies in Avian Biology,2015
5. Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献