Author:
Hoffman Alexander F.,Oz Murat,Yang Ruiqin,Lichtman Aron H.,Lupica Carl R.
Abstract
Memory deficits produced by marijuana arise partly via interaction of the psychoactive component, Δ9-tetrahydrocannabinol (Δ9-THC), with cannabinoid receptors in the hippocampus. Although cannabinoids acutely reduce glutamate release and block hippocampal long-term potentiation (LTP), a potential substrate for learning and memory, the consequences of prolonged exposure to Δ9-THC for hippocampal function are poorly understood. Rats were injected with Δ9-THC (10 mg/kg, i.p., q.d.) for 1, 3, or 7 d, and electrophysiological recordings were performed in hippocampal slices 1d after the final injection. At this time, Δ9-THC was undetectable in hippocampus using liquid chromatography–mass spectrometry (LC-MS). Hippocampal LTP generated using high-frequency (HFS) or theta burst stimulation was not observed in brain slices from the 7-d Δ9-THC-treated animals. Δ9-THC also blocked HFS-LTP after 3 d, but not 1 d of treatment. The complete blockade of LTP persisted for 3 d after the last Δ9-THC injection, and full reversal of the LTP deficit was not observed up to 14 d following Δ9-THC withdrawal. The cannabinoid antagonist AM251 (2 mg/kg), administered before each Δ9-THC injection prevented the blockade of LTP, and 7-d treatment with AM251 alone significantly increased the level of LTP. Chronic Δ9-THC also produced tolerance to the inhibition of synaptic GABA, but not glutamate release by the agonist WIN55,212-2. These data define consequences of repeated Δ9-THC exposure for synaptic plasticity in the hippocampus that may help explain memory impairments in humans following chronic marijuana use.
Publisher
Cold Spring Harbor Laboratory
Subject
Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献