Adaptation to seasonal reproduction and thermal minima-related factors drives fine-scale divergence despite gene flow in Atlantic herring populations

Author:

Fuentes-Pardo Angela P.ORCID,Bourne Christina,Singh Rabindra,Emond Kim,Pinkham Lisa,McDermid Jenni L.,Andersson Leif,Ruzzante Daniel E.

Abstract

AbstractHigh connectivity and low potential for local adaptation have been common assumptions for most marine species, given their usual high fecundity and dispersal capabilities. Recent genomic studies however, have disclosed unprecedented levels of population subdivision in what were previously presumed to be panmictic or nearly panmictic species. Here we analyzed neutral and adaptive genetic variation at the whole-genome level in Atlantic herring (Clupea harengusL.) spawning aggregations distributed across the reproductive range of the species in North America. We uncovered fine-scale population structure at putatively adaptive loci, despite low genetic differentiation at neutral loci. Our results revealed an intricate pattern of population subdivision involving two overlapping axes of divergence: a temporal axis determined by seasonal reproduction, and a spatial axis defined by a latitudinal cline establishing a steep north-south genetic break. Genetic-environment association analyses indicated that winter sea-surface temperature is the best predictor of the spatial structure observed. Thousands of outlier SNPs distributed along specific parts of the genome spanning numerous candidate genes underlined each pattern of differentiation, forming so-called “genomic regions or islands of divergence”. Our results indicate that timing of reproduction and latitudinal spawning location are features under disruptive selection leading to local adaptation in the herring. Our study highlights the importance of preserving functional and neutral intraspecific diversity, and the utility of an integrative seascape genomics approach for disentangling intricate patterns of intraspecific diversity in highly dispersive and abundant marine species.

Publisher

Cold Spring Harbor Laboratory

Reference103 articles.

1. Genomics and the future of conservation genetics

2. Genetic variability in Atlantic herring (Clupea harengus harengus): description of protein loci and population data;Hereditas,1981

3. Detecting population structure in a high gene-flow species, Atlantic herring (Clupea harengus): direct, simultaneous evaluation of neutral vs putatively selected loci

4. Andrews, S. (2010). FastQC: a quality control tool for high throughput sequence data. Retrieved May 1, 2018, from http://www.bioinformatics.babraham.ac.uk/projects/fastqc

5. Molecular spandrels: tests of adaptation at the genetic level

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3