Nowcasting by Bayesian Smoothing: A flexible, generalizable model for real-time epidemic tracking

Author:

McGough Sarah F.ORCID,Johansson Michael A.,Lipsitch Marc,Menzies Nicolas A.

Abstract

AbstractDelays in case reporting are common to disease surveillance systems, making it difficult to track diseases in real-time. “Nowcast” approaches attempt to estimate the complete case counts for a given reporting date, using a time series of case reports that is known to be incomplete due to reporting delays. Modeling the reporting delay distribution is a common feature of nowcast approaches. However, many nowcast approaches ignore a crucial feature of infectious disease transmission—that future cases are intrinsically linked to past reported cases—and are optimized to a single application, which may limit generalizability. Here, we present a Bayesian approach, NobBS (Nowcasting by Bayesian Smoothing) capable of producing smooth and accurate nowcasts in multiple disease settings. We test NobBS on dengue in Puerto Rico and influenza-like illness (ILI) in the United States to examine performance and robustness across settings exhibiting a range of common reporting delay characteristics (from stable to time-varying), and compare this approach with a published nowcasting package. We show that introducing a temporal relationship between cases considerably improves performance when the reporting delay distribution is time-varying, and we identify trade-offs in the role of moving windows to accurately capture changes in the delay. We present software implementing this new approach (R package “NobBS”) for widespread application.SignificanceAchieving accurate, real-time estimates of disease activity is challenged by delays in case reporting. However, approaches that seek to estimate cases in spite of reporting delays often do not consider the temporal relationship between cases during an outbreak, nor do they identify characteristics of robust approaches that generalize to a wide range of surveillance contexts with very different reporting delays. Here, we present a smooth Bayesian nowcasting approach that produces accurate estimates that capture the time evolution of the epidemic curve and outperform a previous approach in the literature. We assess the performance for two diseases to identify important features of the reporting delay distribution that contribute to the model’s performance and robustness across surveillance settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3