canoe encodes a novel protein containing a GLGF/DHR motif and functions with Notch and scabrous in common developmental pathways in Drosophila.

Author:

Miyamoto H,Nihonmatsu I,Kondo S,Ueda R,Togashi S,Hirata K,Ikegami Y,Yamamoto D

Abstract

The canoemisty1 (cnomis1) mutation was isolated by virtue of its severe rough eye phenotype from approximately 500 fly lines, each harboring a single autosomal insertion of a P element (Bm delta w). Excision of the P element generated a lethal, null allele, cnomis10, together with many revertants with normal eye morphology. Ommatidia homozygous for cnomis10, produced in an otherwise wild-type eye by somatic recombination, typically contain a reduced number of outer photoreceptors. Some cnomis1 homozygous adults bear extra macrochaetes on the head, notum, humerus and/or scutellum. cnomis1 hemizygotes often show conspicuous wing phenotypes such as a notched blade and the loss of a cross vein. The sequence of cno cDNA clones isolated from an embryonic cDNA library revealed a long open reading frame that potentially encodes a 1893-amino-acid protein with the GLGF/DHR motif, a conserved sequence in Discs large, Dishevelled, and some other proteins associated with cellular junctions. Flies doubly mutant for cnomis1 and scabrous1 (sca1) and those for cnomis1 and the split (spl) allele of Notch (N) always have rumpled wings curved downward. The spl; cnomis1 double mutant flies also exhibit a "giant socket" phenotype. These phenotypes are rarely observed flies singly mutant for either cnomis1, sca1 or spl. The wing vein gaps caused by Abruptex1, a N allele producing an activated form of N protein, are dominantly suppressed by cnomis1. Heterozygosity for shaggy and myospheroid promotes formation of extra wing veins in cnomis1 homozygotes. The genetic interactions suggest that cno participates with members of the N pathway in regulating adhesive cell-cell interactions for the determination of cell fate.

Publisher

Cold Spring Harbor Laboratory

Subject

Developmental Biology,Genetics

Reference76 articles.

1. The Notch Locus and the Cell Biology of Neuroblast Segregation

2. Axelrod, J. and N. Perrimon. 1994. “dishevelled mediates wingless and Notch signaling in determining cell fates on the Drosophila wing margin.” Thirty-fifth Annual Drosophila Research Conference Program and Abstracts Volume, 35B.

3. Spacing Differentiation in the Developing Drosophila Eye: a Fibrinogen-related Lateral Inhibitor Encoded by scabrous

4. Mutations on the second chromosome affecting the Drosophila eye.;J. Neurogenet.,1992

5. Hairless is required for the development of adult sensory organ precursor cells in Drosophila.;Development,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3