Abstract
ABSTRACTBacterial biofilm formation involves multigenic signaling and regulatory pathways that control the transition from motile to sessile lifestyle, production of extracellular polymeric matrix, and maturation of the biofilm complex 3D structure. Biofilms are extensively studied because of their importance in biomedical, ecological and industrial settings. Genetic approaches based on gene inactivation are powerful for mechanistic studies but often are labor intensive, limiting systematic gene surveys to the most tractable bacterial hosts. Here, we adapted the CRISPR interference (CRISPRi) system for use in P. fluorescens. We found that CRISPRi is applicable to three genetically and physiologically diverse species, SBW25, WH6 and Pf0-1 and affords extended periods of time to study complex phenotypes such as cell morphology, motility and biofilm formation. In SBW25, CRISPRi-mediated silencing of the GacA/S two-component system and genes regulated by cylic-di-GMP produced phenotypes similar to those previously described after gene inactivation in various Pseudomonas. Combined with detailed confocal microscopy of biofilms, our study also revealed novel phenotypes associated with biofilm architecture and extracellular matrix biosynthesis as well as the potent inhibition of SBW25 biofilm formation mediated by the PFLU1114 protein. Thus, CRISPRi is a reliable and scalable approach to interrogate gene networks in the diverse P. fluorescens group.
Publisher
Cold Spring Harbor Laboratory