Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape

Author:

Pleydell David,Soubeyrand Samuel,Dallot Sylvie,Labonne Gérard,Chadœuf Joël,Jacquot Emmanuel,Thébaud Gaël

Abstract

AbstractCharacterising the spatio-temporal dynamics of pathogensin naturais key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease, and from the computationally intractable number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a fragmented landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years over 600 orchards, we obtain the first estimate of the distribution of the flight distances of infectious aphids at the landscape scale. Most infectious aphids leaving a tree land beyond the bounds of a 1-ha orchard (50% of flights terminate within about 90 m). Moreover, long-distance flights are not rare (10% of flights exceed 1 km). By their impact on our quantitative understanding of winged aphids dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.Author SummaryIn spatial epidemiology, dispersal kernels quantify how the probability of pathogen dissemination varies with distance. Spatial models of pathogen spread are sensitive to kernel parameters; yet these parameters have rarely been estimated using field data gathered at relevant scales. Robust estimation is rendered difficult by practical constraints limiting the number of surveyed individuals, and uncertainties concerning their disease status. Here, we present a framework that overcomes these barriers and permits inference for a between-patch transmission model. Extensive simulations show that dispersal kernels can be estimated from epidemiological surveillance data. When applied to such data collected from more than 600 orchards during 15 years of a plant virus epidemic our approach enables the estimation of the dispersal kernel of infectious winged aphids. This kernel is long-tailed, as 50% of the infectious aphids leaving a tree terminate their infectious flight within 90 m and 10% beyond 1 km. This first estimate of flight distances at the landscape scale for aphids–a group of vectors transmitting numerous viruses–is crucial for the science-based design of control strategies targeting plant virus epidemics.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3