mRNP architecture in translating and stress conditions reveals an ordered pathway of mRNP compaction

Author:

Khong Anthony,Parker Roy

Abstract

ABSTRACTStress granules (SGs) are non-translating mRNP assemblies that form during stress. Herein, we use multiple smFISH probes for specific mRNAs to examine their SG recruitment and spatial organization. We observed that ribosome run-off is required for SG entry with long ORF mRNAs being delayed in SG accumulation, revealing SG transcriptome changes over time. Moreover, mRNAs are ~20X compacted from an expected linear length when translating and compact ~2 fold further in a stepwise manner beginning at the 5’ end during ribosome run-off. Surprisingly, the 5’ and 3’ ends of the examined mRNAs were separated in non-stress conditions, but in non-translating conditions, the ends of AHNAK and DYNC1H1 mRNAs become close, suggesting the closed-loop model of mRNPs preferentially forms on non-translating mRNAs. These results suggest translation inhibition triggers a mRNP reorganization that brings ends closer, which has implications for the regulation of mRNA stability and translation by 3’ UTR elements and the poly(A) tail.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3