Identification of orthotropic material parameters for acute, necrotic, fibrotic and remodelling myocardial infarcts in the rat

Author:

Sirry Mazin S.,Dubuis Laura,Davies Neil H.,Liao Jun,Franz ThomasORCID

Abstract

AbstractFinite element (FE) models have been effectively utilized in studying biomechanical aspects of myocardial infarction (MI). Although the rat is a widely used animal model for MI, there is a lack of material parameters based on anisotropic constitutive models for rat myocardial infarcts in literature. This study aimed at employing inverse methods to identify the parameters of an orthotropic constitutive model for myocardial infarcts in the acute, necrotic, fibrotic and remodelling phases utilizing the biaxial mechanical data developed in a previous study. FE model was developed mimicking the setup of the biaxial tensile experiment. The orthotropic case of the generalized Fung constitutive model was utilized to model the material properties of the infarct. The parameters of Fung model were optimized so that the FE solution best fitted the biaxial experimental stress-strain data. A genetic algorithm was used to minimize the objective function. Fung orthotropic material parameters for different infarct stages were identified. The FE model predictions best approximated the experimental data of the 28 days infarct stage with 3.0% mean absolute percentage error. The worst approximation was for the 7 days stage with 3.6% error. This study demonstrated that the experimental biaxial stress-strain data of healing rat infarcts could be successfully approximated using inverse FE methods and genetic algorithms. The material parameters identified in this study will provide an essential platform for FE investigations of biomechanical aspects of MI and the development of therapies.

Publisher

Cold Spring Harbor Laboratory

Reference29 articles.

1. Biaxial Mechanical Properties of the Natural and Glutaraldehyde Treated Aortic Valve Cusp—Part I: Experimental Results

2. Remodeling of cardiac fiber structure after infarction in rats quantified with diffusion tensor mri;American Journal of Physiology – Heart and Circulatory Physiology,2003

3. Modelling cardiac mechanical properties in three dimensions

4. Evolution of scar structure, mechanics, and ventricular function after myocardial infarction in the rat;American Journal of Physiology – Heart and Circulatory Physiology,2010

5. Pseudoelasticity of arteries and the choice of its mathematical expression;American Journal of Physiology,1979

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3