Hidden patterns of codon usage bias across kingdoms

Author:

Deng Yun,de Lima Hedayioglu Fabio,Kalfon Jeremie,Chu Dominique,von der Haar Tobias

Abstract

AbstractThe genetic code is necessarily degenerate with 64 possible nucleotide triplets being translated into 20 amino acids. 18 out of the 20 amino acids are encoded by multiple synonymous codons. While synonymous codons are clearly equivalent in terms of the information they carry, it is now well established that they are used in a biased fashion. There is currently no consensus as to the origin of this bias. Drawing on ideas from stochastic thermodynamics we derive from first principles a mathematical model describing the statistics of codon usage bias. We show that the model accurately describes the distribution of codon usage bias of genomes in the fungal and bacterial kingdoms. Based on it, we derive a new computational measure of codon usage bias — the distance capturing two aspects of codon usage bias: (i) Differences in the genome-wide frequency of codons and (ii) apparent non-random distributions of codons across mRNAs. By means of large scale computational analysis of over 900 species across 2 kingdoms of life, we demonstrate that our measure provides novel biological insights. Specifically, we show that while codon usage bias is clearly based on heritable traits and closely related species show similar degrees of bias, there is considerable variation in the magnitude of within taxonomic classes suggesting that the contribution of sequence-level selection to codon bias varies substantially within relatively confined taxonomic groups. Interestingly, commonly used model organisms are near the median for values of for their taxonomic class, suggesting that they may not be good representative models for species with more extreme , which comprise organisms of medical an agricultural interest. We also demonstrate that amino acid specific patterns of codon usage are themselves quite variable between branches of the tree of life, and that some of this variability correlates with organismal tRNA content.

Publisher

Cold Spring Harbor Laboratory

Reference35 articles.

1. Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E;coli translational system. Journal of Molecular Biology,1981

2. Codon Selection in Yeast;The Journal of Biological Chemistry,1982

3. The codon adaptation index-a measure of directional synonymous codon usage bias, and its potential applications

4. The ‘effective number of codons’ used in a gene

5. Explaining complex codon usage patterns with selection for translational efficiency, mutation bias, and genetic drift

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3