Cell Type-specific Genome Scans of DNA Methylation Diversity Indicate an Important Role for Transposable Elements

Author:

Kartal ÖnderORCID,Schmid Marc WORCID,Grossniklaus UeliORCID

Abstract

AbstractThe epigenome modulates the activity of genes and supports the stability of the genome. The epigenome can also contain phenotypically relevant, heritable marks that may vary at the organismic and population level. Such non-genetic standing variation may be relevant to ecological and evolutionary processes. To identify loci susceptible to selection, it is common to profile large populations at the genome scale, yet methods to perform such scans for epigenetic diversity are barely tapped. Here, we develop a scalable, information-theoretic approach to assess epigenome diversity based on Jensen-Shannon divergence (JSD) and demonstrate its practicality by measuring cell type-specific methylation diversity in the model plantArabidopsis thaliana. DNA methylation diversity tends to be increased in the CG as compared to the non-CG (CHG and CHH) sequence context but the tissue or cell type has an impact on diversity at non-CG sites. Less accessible, more heterochromatic states of chromatin exhibit increased diversity. Genes tend to carry more single-methylation polymorphisms when they harbor gene body-like chromatin signatures and flank transposable elements (TEs). In conclusion, the analysis of DNA methylation with JSD inArabidopsisdemonstrates that the genomic location of a gene dominates its methylation diversity, in particular the proximity to TEs which are increasingly viewed as drivers of evolution. Importantly, the JSD-based approach we implemented here is applicable to any population-level epigenomic data set to analyze variation in epigenetic marks among individuals, tissues, or cells of any organism, including the epigenetic heterogeneity of cells in healthy or diseased organs such as tumors.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3