Plantarflexor fiber length and tendon slack length are the strongest determinates of simulated single-leg heel raise function

Author:

Baxter Josh R.ORCID,Hast Daniel C.ORCID,Hast Michael W.

Abstract

Abstract:Achilles tendon ruptures lead to reduced ankle function and often limits recreational activity. Single-leg heel raises are often used clinically to characterize patient function. However, it is unclear how the structure of the Achilles tendon and plantarflexor muscles affects single-leg heel raise function. Therefore, the purpose of this study was to develop a musculoskeletal model in order to simulate the effects of muscle-tendon unit (MTU) parameters on peak plantarflexion during this clinically-relevant task. The ankle joint was plantarflexed by two MTUs that represented the soleus and gastrocnemius muscles. The optimal fiber length, maximal muscle force, muscle pennation, tendon stiffness, and resting ankle angle – a surrogate measure of tendon slack length – were iteratively adjusted to test the combined effects of each of these MTU parameters. Single-leg heel raises were simulated by maximally exciting the two plantarflexor MTUs for each model configuration (N = 161,051 simulations). Optimal muscle fiber and tendon slack lengths had the greatest effect on peak plantarflexion during simulated single-leg heel raises. Simulations that were unable to produce at least 30 degrees of plantarflexion had muscle fibers that were shorter than healthy muscle and longer tendon slack lengths. These findings highlight the importance of preserving muscle fascicle and tendon length following Achilles tendon injuries.Funding no funding has been provided for this researchAcknowledgements the Authors have no acknowledgementsConflict of interest the Authors have no conflicts of interest that are relevant to this work

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3