Rats Sniff off Toxic Air

Author:

Chen Haoxuan,Li Xinyue,Yao Maosheng

Abstract

AbstractBreathing air is a fundamental human need, yet its safety, when challenged by various harmful or lethal substances, is often not properly guarded. For example, air toxicity is currently monitored only for single or limited number of known toxicants, thus failing to fully warn against possible hazardous air. Here, we discovered that within minutes living rats emitted distinctive profiles of volatile organic compounds (VOCs) via breath when exposed to various airborne toxicants such as endotoxin, O3, ricin, and CO2. Compared to background indoor air, when exposed to ricin or endotoxin aerosols breath-borne VOC levels, especially that of carbon disulfide, were shown to decrease; while their elevated levels were observed for O3 and CO2 exposures. A clear contrast in breath-borne VOCs profiles of rats between different toxicant exposures was observed with a statistical significance. Differences in MicroRNA regulations such as miR-33, miR-146a and miR-155 from rats’ blood samples revealed different mechanisms used by the rats in combating different air toxicant challenges. Similar to dogs, rats were found here to be able to sniff against toxic air by releasing a specific breath-borne VOC profile. The discovered science opens a new arena for online monitoring air toxicity and health effects of pollutants.TOC

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3