Multivariate analysis reveals environmental and genetic determinants of element covariation in the maize grain ionome

Author:

Asaro AlexandraORCID,Dilkes Brian P.ORCID,Baxter IvanORCID

Abstract

AbstractPlants obtain elements from the soil through genetic and biochemical pathways responsive to physiological state and environment. Most perturbations affect multiple elements which leads the ionome, the full complement of mineral nutrients in an organism, to vary as an integrated network rather than a set of distinct single elements. To examine the genetic basis of covariation in the accumulation of multiple elements, we analyzed maize kernel ionomes from Intermated B73 × Mo17 (IBM) recombinant inbred populations grown in 10 environments. We compared quantitative trait loci (QTL) determining single-element variation to QTL that predict variation in principal components (PCs) of multiple-element covariance. Single-element and multivariate approaches detected partially overlapping sets of loci. In addition to loci co-localizing with single-element QTL, multivariate traits within environments were controlled by loci with significant multi-element effects not detectable using single-element traits. Gene-by-environment interactions underlying multiple-element covariance were identified through QTL analyses of principal component models of ionome variation. In addition to interactive effects, growth environment had a profound effect on the elemental profiles and multi-element phenotypes were significantly correlated with specific environmental variables.Author SummaryA multivariate approach to the analysis of element accumulation in the maize kernel shows that elements are not regulated independently. By describing relationships between element accumulation we identified new genetic loci invisible to single-element approaches. The mathematical combinations of elements distinguish groups of plants based on environment, demonstrating that observed variation derives from interactions between genetically controlled factors and environmental variables. These results suggest that successful application of ionomics to improve human nutrition and plant productivity requires simultaneous consideration of multiple-element effects and variation of such effects in response to environment.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3