Individual level reliability of PAS-induced neural plasticity

Author:

Kim Yeun,Ngo Jacqueline P.,Deblieck Choi,Edwards Dylan J.,Dobkin Bruce,Wu Allan D.,Iacoboni Marco

Abstract

AbstractObjectiveWe assessed the individual level reliability of neural plasticity changes induced by paired associative stimulation (PAS), which combines peripheral nerve stimulation with transcranial magnetic stimulation to induce short-term plastic changes in the brain.MethodsFor 5 consecutive weeks, motor evoked potentials (MEPs) of 8 healthy subjects were acquired every 10 minutes post-PAS intervention for a period of 60 minutes. The post-PAS MEPs were evaluated against base-line MEPs using permutation and Kolmogorov-Smirnov tests to determine whether the MEP magnitudes changed after PAS. Moreover, various sample sizes of the MEP data were used to deduce the minimum number of MEPs needed to reliably detect individual propensity to neural plasticity.ResultsGroup analysis exhibited significant increase in post-PAS MEPs, confirming previous results. While high between-sessions variability was observed at individual level, data show that between 40 to 50 MEPs can reliably assess each subject’s responsiveness to PAS. Subjects exhibited three different plasticity patterns: in the modulated hemisphere only, both hemispheres, or neither hemisphere.ConclusionsPAS can reliably assess individual differences in neural plasticity.SignificanceA marker of individual plasticity may be useful to predict the effects of a motor rehabilitation, drug or other intervention to increase recovery of function after brain injury.HighlightsPaired associative stimulation (PAS) assesses neural plasticity non invasively.The study shows how PAS can reliably determine individual differences in plasticity.PAS may be used to predict intervention outcome or individualize treatment dose.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3