Sox2 and Sox3 are essential for development and regeneration of the zebrafish lateral line

Author:

Undurraga Cristian A.ORCID,Gou Yunzi,Sandoval Pablo C.ORCID,Nuñez Viviana A.ORCID,Allende Miguel L.,Riley Bruce B.,Hernández Pedro P.ORCID,Sarrazin Andres F.ORCID

Abstract

ABSTRACTThe recovery of injured or lost sensory neurons after trauma, disease or aging is a major scientific challenge. Upon hearing loss or balance disorder, regeneration of mechanosensory hair cells has been observed in fish, some amphibians and under special circumstances in birds, but is absent in adult mammals. In aquatic vertebrates, hair cells are not only present in the inner ear but also in neuromasts of the lateral line system. The zebrafish lateral line neuromast has an almost unlimited capacity to regenerate hair cells. This remarkable ability is possible due to the presence of neural stem/progenitor cells within neuromasts. In order to further characterize these stem cells, we use the expression of the neural progenitor markers Sox2 and Sox3, transgenic reporter lines, and morphological and topological analysis of the different cell types within the neuromast. We reveal new sub-populations of supporting cells, the sustentacular supporting cells and the neuromast stem cells. In addition, using loss-of-function and mutants of sox2 and sox3, we find that the combined activity of both genes is essential for lateral line development and regeneration. The capability of sox2/sox3 expressing stem cells to produce new hair cells, hair cell-precursors, and supporting cells after damage was analyzed in detail by time-lapse microscopy and immunofluorescence. We are able to provide evidence that sox2/3 expressing cells are the main contributors to the regenerated neuromast, and that their daughter cells are able to differentiate into most cell types of the neuromast.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3