The use of mutants and inhibitors to study sterol biosynthesis in plants

Author:

Vriese Kjell DeORCID,Pollier JacobORCID,Goossens AlainORCID,Beeckman TomORCID,Vanneste SteffenORCID

Abstract

ABSTRACTSterols are very well known for their important roles in membranes and signaling in eukaryotes. Plants stand out among eukaryotes by the large variety of sterols that they can produce, and employing them across a wide spectrum of physiological processes. Therefore, it is critical to understand the wiring of the biosynthetic pathways by which plants generate these distinct sterols, to allow manipulating them and dissect their precise physiological roles. Many enzymatic steps show a deep evolutionary conservation, while others are executed by completely different enzymes. Here, we review the complexity and variation of the biosynthetic routes of the most abundant phytosterols in the green lineage and how different enzymes in these pathways are conserved and diverged from humans,yeast and even bacteria. Based on their evolutionary conservation we discuss the use of human and yeast sterol biosynthesis inhibitors in plants, as an argument for the development of plant-tailored inhibitors of sterol biosynthesis.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3