Cancer progression models and fitness landscapes: a many-to-many relationship

Author:

Diaz-Uriarte RamonORCID

Abstract

AbstractThe identification of constraints, due to gene interactions, in the order of accumulation of mutations during cancer progression can allow us to single out therapeutic targets. Cancer progression models (CPMs) use genotype frequency data from cross-sectional samples to try to identify these constraints, and return Directed Acyclic Graphs (DAGs) of genes. On the other hand, fitness landscapes, which map genotypes to fitness, contain all possible paths of tumor progression. Thus, we expect a correspondence between DAGs from CPMs and the fitness landscapes where evolution happened. But many fitness landscapes —e.g., those with reciprocal sign epistasis— cannot be represented by CPMs. Using simulated data under 500 fitness landscapes, I show that CPMs’ performance (prediction of genotypes that can exist) degrades with reciprocal sign epistasis. There is large variability in the DAGs inferred from each landscape, which is also affected by mutation rate, detection regime, and fitness landscape features, in ways that depend on CPM method. And the same DAG is often observed in very different landscapes, which differ in more than 50% of their accessible genotypes. Using a pancreatic data set, I show that this many-to-many relationship affects the analysis of empirical data. Fitness landscapes that are widely different from each other can, when evolutionary processes run repeatedly on them, both produce data similar to the empirically observed one, and lead to DAGs that are very different among themselves. Because reciprocal sign epistasis can be common in cancer, these results question the use and interpretation of CPMs.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3