Defining the relevant combinatorial space of the PKC/CARD-CC signal transduction nodes

Author:

Staal Jens,Driege Yasmine,Haegman Mira,Kreike Marja,Iliaki Styliani,Vanneste Domien,Affonina Inna,Braun Harald,Beyaert Rudi

Abstract

AbstractBiological signal transduction typically display a so-called bow-tie or hour glass topology: Multiple receptors lead to multiple cellular responses but the signals all pass through a narrow waist of central signaling nodes. One such critical signaling node for several inflammatory and oncogenic signaling pathways in humans are the CARD-CC / Bcl10 / MALT1 (CBM) complexes, which get activated by upstream protein kinase C (PKC). In humans, there are four phylogenetically distinct CARD-CC family (CARD9, −10, −11 and −14) proteins and 9 true PKC isozymes (α to ι). At this moment, less than a handful of PKC/CARD-CC relationships are known from experimental evidence. In order to explore the biologically relevant combinatorial space out of all 36 potential permutations in this two-component signaling event, we made use of CRISPR/Cas9 genome-edited HEK293T cells to mutate CARD10 for subsequent pairwise cotransfections of all CARD-CC family members and activated mutants of all true PKCs. By quantitative reporter gene expression readout, we could define specific strong and weak PKC/CARD-CC relationships. Surprisingly as many as 21 PKC/CARD-CC combinations were found to have synergistic effects. We also discovered heterodimerization between different CARD-CC proteins, and that this can influence their PKC response profile. This information will be valuable for future studies of novel signaling pathways dependent on the CBM complex signaling nodes.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3