D1/D5 receptors and histone deacetylation mediate the Gateway Effect of LTP in hippocampal dentate gyrus

Author:

Huang Yan-You,Levine Amir,Kandel Denise B.,Yin Deqi,Colnaghi Luca,Drisaldi Bettina,Kandel Eric R.

Abstract

The dentate gyrus (DG) of the hippocampus is critical for spatial memory and is also thought to be involved in the formation of drug-related associative memory. Here, we attempt to test an aspect of the Gateway Hypothesis, by studying the effect of consecutive exposure to nicotine and cocaine on long-term synaptic potentiation (LTP) in the DG. We find that a single injection of cocaine does not alter LTP. However, pretreatment with nicotine followed by a single injection of cocaine causes a substantial enhancement of LTP. This priming effect of nicotine is unidirectional: There is no enhancement of LTP if cocaine is administrated prior to nicotine. The facilitation induced by nicotine and cocaine can be blocked by oral administration of the dopamine D1/D5 receptor antagonist (SKF 83566) and enhanced by the D1/D5 agonist (SKF 38393). Application of the histone deacetylation inhibitor suberoylanilide hydroxamic acid (SAHA) simulates the priming effect of nicotine on cocaine. By contrast, the priming effect of nicotine on cocaine is blocked in genetically modified mice that are haploinsufficient for the CREB-binding protein (CBP) and possess only one functional CBP allele and therefore exhibit a reduction in histone acetylation. These results demonstrate that the DG of the hippocampus is an important brain region contributing to the priming effect of nicotine on cocaine. Moreover, both activation of dopamine-D1 receptor/PKA signaling pathway and histone deacetylation/CBP mediated transcription are required for the nicotine priming effect in the DG.

Publisher

Cold Spring Harbor Laboratory

Subject

Cellular and Molecular Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3