Measuring Biotherapeutic Viscosity and Degradation On-Chip with Particle Diffusometry

Author:

Clayton K.N.ORCID,Lee D.,Wereley S.T.,Kinzer-Ursem T. L.

Abstract

In absence of efficient ways to test drug stability and efficacy, pharmaceuticals that have been stored outside of set temperature conditions are destroyed, often at great cost. This is especially problematic for biotherapeutics, which are highly sensitive to temperature fluctuations. Current platforms for assessing the stability of protein-based biotherapeutics in high throughput and in low volumes are unavailable outside of research and development laboratories and are not efficient for use in production, quality control, distribution, or clinical settings. In these alternative environments, microanalysis platforms could provide significant advantages for the characterization of biotherapeutic degradation. Here we present particle diffusometry (PD), a new technique to study degradation of biotherapeutic solutions. PD uses a simple microfluidic chip and microscope setup to calculate the Brownian motion of particles in a quiescent solution using a variation of particle image velocimetry (PIV) fundamentals. We show that PD can be used to measure the viscosity of protein solutions to discriminate intact protein from degraded samples as well as to determine the change in viscosity as a function of therapeutic concentration. PD viscosity analysis is applied to two particularly important biotherapeutic preparations: insulin, a commonly used protein for diabetic patients, and monoclonal antibodies which are an emerging class of biotherapeutics used to treat a variety of diseases such as autoimmune disorders and cancer. PD-based characterization of solution viscosity is a new tool for biotherapeutic analysis, and owing to its easy setup could readily be implemented at key points of the pharmaceutical delivery chain and in clinical settings.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3