A Quasi Birth-and-Death Model For Tumor Recurrence

Author:

Santana Leonardo M.,Ganesan Shridar,Bhanot Gyan

Abstract

AbstractA major cause of chemoresistance and recurrence in tumors is the presence of dormant tumor foci that survive chemotherapy and can eventually transition to active growth to regenerate the cancer. In this paper, we propose a Quasi Birth-and-Death (QBD) model for the dynamics of tumor growth and recurrence/remission of the cancer. Starting from a discrete-state master equation that describes the time-dependent transition probabilities between states with different numbers of dormant and active tumor foci, we develop a framework based on a continuum-limit approach to determine the time-dependent probability that an undetectable residual tumor will become large enough to be detectable. We derive an exact formula for the probability of recurrence at large times and show that it displays a phase transition as a function of the ratio of the death rate µA of an active tumor focus to its doubling rate λ. We also derive forward and backward Kolmogorov equations for the transition probability density in the continuum limit and, using a first-passage time formalism, we obtain a drift-diffusion equation for the mean recurrence time and solve it analytically to leading order for a large detectable tumor size N. We show that simulations of the discrete-state model agree with the analytical results, except for O(1/N) corrections. Finally, we describe a scheme to fit the model to recurrence-free survival (Kaplan-Meier) curves from clinical cancer data, using ovarian cancer data as an example. Our model has potential applications in predicting how changing chemotherapy schedules may affect disease recurrence rates, especially in cancer types for which no targeted therapy is available.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3