Systems-level physiology of the human red blood cell is computed from metabolic and macromolecular mechanisms

Author:

Yurkovich James T.ORCID,Yang LaurenceORCID,Palsson Bernhard O.ORCID

Abstract

ABSTRACTThe human red blood cell has served as a starting point for the application and development of systems biology approaches due to its simplicity, intrinsic experimental accessibility, and importance in human health applications. Here, we present a multi-scale computational model of the human red blood cell that accounts for the full metabolic network, key proteins (>95% of proteome mass fraction), and several macromolecular mechanisms. Proteomics data are used to place quantitative constraints on individual protein complexes that catalyze metabolic reactions, as well as a total proteome capacity constraint. We explicitly describe molecular mechanisms—such as hemoglobin binding and the formation and detoxification of reactive oxygen species—and takes standard hematological variables (e.g., hematocrit, hemoglobin concentration) as input, allowing for personalized physiological predictions. This model is built from first principles and allows for direct computation of physiologically meaningful quantities such as the oxygen dissociation curve and an accurate computation of the flux state of the metabolic network. More broadly, this work represents an important step toward including the proteome and its function in whole-cell models of human cells.

Publisher

Cold Spring Harbor Laboratory

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3