In silicoidentification of novel peptides with antibacterial activity against multidrug resistantStaphylococcus aureus

Author:

Oyama Linda BORCID,Olleik HamzaORCID,Teixeira Ana Carolina Nery,Guidini Matheus M,Pickup James AORCID,Cookson Alan RORCID,Vallin Hannah,Wilkinson Toby,Bazzolli Denise,Richards Jennifer,Wootton Mandy,Mikut RalfORCID,Hilpert KaiORCID,Maresca MarcORCID,Perrier Josette,Hess MatthiasORCID,Mantovani Hilario C,Fernandez-Fuentes NarcisORCID,Creevey Christopher JORCID,Huws Sharon A

Abstract

AbstractHerein we report the identification and characterisation of two linear antimicrobial peptides (AMPs), HG2 and HG4, with activity against a wide range of multidrug resistant (MDR) bacteria, especially methicillin resistantStaphylococcus aureus(MRSA) strains, a highly problematic group of Gram-positive bacteria in the hospital and community environment. To identify the novel AMPs presented here, we employed the classifier model design, a feature extraction method using molecular descriptors for amino acids for the analysis, visualization, and interpretation of AMP activities from a rumen metagenomic dataset. This allowed for thein silicodiscrimination of active and inactive peptides in order to define a small number of promising novel lead AMP test candidates for chemical synthesis and experimental evaluation.In vitrodata suggest that the chosen AMPs are fast acting, show strong biofilm inhibition and dispersal activity and are efficacious in anin vivomodel of MRSA USA300 infection, whilst showing little toxicity to human erythrocytes and human primary cell linesex vivo. Observations from biophysical AMP-lipid-interactions and electron microscopy suggest that the newly identified peptides interact with the cell membrane and may be involved in the inhibition of other cellular processes. Amphiphilic conformations associated with membrane disruption are also observed in 3D molecular modelling of the peptides. HG2 and HG4 both preferentially bind to MRSA total lipids rather than with human cell lipids indicating that HG4 may form superior templates for safer therapeutic candidates for MDR bacterial infections.Author SummaryWe are losing our ability to treat multidrug resistant (MDR) bacteria, otherwise known as superbugs. This poses a serious global threat to human health as bacteria are increasingly acquiring resistance to antibiotics. There is therefore urgent need to intensify our efforts to develop new safer alternative drug candidates. We emphasise the usefulness of complementing wet-lab andin silicotechniques for the rapid identification of new drug candidates from environmental samples, especially antimicrobial peptides (AMPs). HG2 and HG4, the AMPs identified in our study show promise as effective therapies for the treatment of methicillin resistantStaphylococcus aureusinfections bothin vitroandin vivowhilst having little cytotoxicity against human primary cells, a step forward in the fight against MDR infections.

Publisher

Cold Spring Harbor Laboratory

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3