Author:
Diagne Christophe,Galan M.,Tamisier Lucie,d’Ambrosio Jonathan,Dalecky Ambroise,Bâ Khalilou,Kane Mamadou,Niang Youssoupha,Diallo Mamoudou,Sow Aliou,Tatard C.,Loiseau A.,Fossati-Gaschignard O.,Sembène Mbacké,Cosson Jean-François,Charbonnel Nathalie,Brouat Carine
Abstract
AbstractSeveral hypotheses (such as ‘enemy release’, ‘novel weapon’, ‘spillback’ and ‘dilution/density effect’) suggest changes in host-parasite ecological interactions during biological invasion events. Such changes can impact both invasion process outcome and the dynamics of exotic and/or endemic zoonotic diseases. To evaluate these predictions, we investigated the ongoing invasions of the house mouse Mus musculus domesticus, and the black rat, Rattus rattus, in Senegal (West Africa). We focused on zoonotic bacterial communities depicted using 16S rRNA amplicon sequencing approach in both invasive and native rodents sampled along two well-defined invasion routes. Overall, this study provided new ecological evidence connecting parasitism and rodent invasion process, with diverse potential roles of zoonotic bacteria in the invasion success. Our results also highlighted the main factors that lie behind bacterial community structure in commensal rodents. Further experimental studies as well as comparative spatio-temporal surveys are necessary to decipher the actual role of zoonotic bacteria in these invasions. Our data also gave new support for the difficulty to predict the direction in which the relationship between biodiversity changes and disease risk could go. These results should be used as a basis for public health prevention services to design reservoir monitoring strategies based on multiple pathogen surveillance.
Publisher
Cold Spring Harbor Laboratory
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献