Sympatric ecological divergence with coevolution of niche preference

Author:

Payne PavelORCID,Polechová Jitka

Abstract

AbstractReinforcement, the increase of assortative mating driven by selection against unfit hybrids, is conditional on pre-existing divergence. Yet, for ecological divergence to precede the evolution of assortment, strict symmetries between fitnesses in niches must hold, and/or there must be low gene flow between the nascent species. It has thus been argued that conditions favouring sympatric speciation are rarely met in nature. Indeed, we show that under disruptive selection, violating symmetries in niche sizes and increasing strength of the trade-off in selection between the niches quickly leads to loss of genetic variation, instead of evolution of specialists. The region of the parameter space where polymorphism is maintained further narrows with increasing number of loci encoding the diverging trait and the rate of recombination between them. Yet, evolvable assortment and pre-existing assortment both substantially broaden the parameter space within which polymorphism is maintained. Notably, pre-existing niche preference speeds up further increase of assortment, thus facilitating reinforcement in the later phases of speciation. We conclude that in order for sympatric ecological divergence to occur, niche preference must co-evolve throughout the divergence process. Even if populations come into secondary contact, having diverged in isolation, niche preference substantially broadens the conditions for coexistence in sympatry and completion of the speciation process.

Publisher

Cold Spring Harbor Laboratory

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3